
Holifield Page 1

individual
project

2.5D Pong

dominic holifield

purdue engr 13300

Holifield Page 2

table of contents

1. Introduction

2. Program Overview

3. Classes

a. Paddle

b. Ball

c. Scoreboard

d. Button

4. User-Defined Functions

a. main

b. mainMenu

c. game

d. winMenu

e. drawShaddow

f. drawBackground

5. User Manual

6. Appendix

3

4

5

5

6

7

8

9

9

9

9

10

10

11

12

15

Holifield Page 3

introduction

This program was written for the Individual Project for

ENGR 13300 using knowledge gained throughout the semester. For

the project, I chose to use Python as the programming language

because of my previous experience as well as highly available

libraries. One of these libraries being Pygame which allows

the program to display graphics and monitor keyboard and mouse

input, perfect for making a game. For the project, I created

2.5D Pong, based off the game pong. My game is like pong in

that you move a paddle up and down a side of the screen to hit

the ball back to your opponent, based on the sport table tennis

or ping pong. How my game differs is that it has part of the

3rd dimension, showing the sides of the objects, their shadows,

and bouncing physics for the ball. My game also requires you

to hit the ball on the table, contrary to normal pong where

the ball bounces off the edges. I chose to create this game

as I had previously created pong in Python and had always

thought it would be interesting to create a more realistic

version. This project was the perfect time to make this idea

come to life. I hope that whoever plays the game will enjoy

it. The project files can be found here:

https://github.com/dholifield/2.5DPong

https://github.com/dholifield/2.5DPong

Holifield Page 4

program overview

 2.5D Pong starts in the main file with the main function

where it initializes Pygame, creates a screen, and creates a

ball and scoreboard. It then runs the main loop where it first

calls the main menu. In the main menu, the user has the option

to select one of three options: one player, two player, or

zero player. One player is the user against the computer, two

player is one user against another on the same computer, and

zero player is two computers playing against each other. Once

a selection is made, the program goes right into the game

where player one serves the ball. Player one uses ‘w’ to move

the paddle up and ‘s’ to move the paddle down while player two

uses ‘o’ and ‘k’. The user must hit the ball back to the

opponent, making sure to hit it on the table. If the ball is

hit the upper edge of the paddle, the ball’s velocity decreases

in y direction and increases when hit on the lower edge. The

paddle also mimics spin by changing the ball speed based on

the speed of the paddle on contact. The score is shown at the

top of the window and a game is played first to 11 points.

Once a winner is determined, the game loop ends, and a winner

screen is pulled up with the option to go back to the main

menu. Once this button is pressed, the main loop will loop

again, bringing the user back to the main menu allowing them

to play again. The game is exited when the window is closed.

Holifield Page 5

classes

class Paddle: pg 20

This class is used to create the paddle objects the

player or computer will use in the game. There are two

subclasses that use Paddles features called playerPaddle

and cpuPaddle.

The parent Paddle class includes the functions

reset() and render(). The initialization of the object

will set the paddles x location on the screen. reset()

will reset the y position of the paddle as well as the

paddle velocity. render() will render the paddle image to

the screen, allowing the player to view it.

The subclass playerPaddle creates a paddle that can

be controlled by keyboard input. It has one function named

update. Initialization of this object will set the x

position as well as the key binds for up and down

movement. The update() function updates the position of

the paddle based on the current velocity. The velocity is

determined by user inputs as well as the borders of the

screen.

The subclass cpuPaddle creates a paddle that can be

controlled by the computer. Like playerPaddle, it has one

function named update. Initialization of this object will

set the x position of the paddle as well as set the

difficulty of the computer. update() updates the position

of the paddle based on the current velocity. Its velocity

is determined by the current position of the ball as well

as the edge of the screen. Higher difficulties will move

faster allowing them to get to the ball sooner and miss

less frequently. Support for varying difficulties is not

yet in place.

Holifield Page 6

class Ball: pg 22

This class is used to create a ball object that is

used during the game. It controls the movement of the

ball, detects paddle collisions, detects when a point is

scored, and keeps track of the current ball possession.

The ball moves in three-dimensional space and is rendered

in a way to capture this effect.

The Ball class includes the functions reset(),

update(), paddleCollide(), scored(), switchPossession(),

and render(). Initialization of a ball object creates a

rectangle for the ball and shadow and sets its starting

position and velocity.

Reset() resets the balls x, y, and z position and

velocity as well as delay to allow the user to recover

between points.

Update() updates the position of the ball based on

the current velocity. The x component of the velocity is

constant in magnitude but flips direction when hit by a

paddle. The z component of the velocity is determined by

the z acceleration, which is gravity. A sound is played

when the ball hits the table. The y component of the

velocity is determined by the ball-paddle collision.

PaddleCollide() checks if the ball has collided with

any of the paddles. When the ball does collide with a

paddle, the x speed is flipped, and the y speed is altered

based on the position the ball hits the paddle as well as

the speed of the paddle on contact. This function also

plays a sound when a ball hits a paddle.

Scored() checks if a ball has been scored or not and

returns this value as a Boolean. The ball is scored when

Holifield Page 7

it hits the ground off the edge of the table, or when a

player is unable to return the ball.

SwitchPossession() switches the current possession

of the ball. This is called in update() and is executed

when the ball hits the table. The possession is used to

determine who gets the point with scored() returns true.

Render() is the last function in Ball which is simply

used to render the ball to the screen. It renders the x

position as is but adds a fraction of the z to the y

position allowing the player to see the ball bouncing. A

shadow is also rendered using only the x and y coordinates

of the ball. The y position of the shadow changes if the

ball goes off the edge of the table and project onto the

ground.

class Scoreboard: pg 25

This class is used to create and object that keeps

track of the score as well as determine a winner.

Scoreboard’s functions include count(), score(), add(),

winner(), reset(), and render(). Initialization of a

Scoreboard object sets each players’ score to 0 as well

as set the score to play to.

Count() checks if a point has been scored and the

uses add() to reward the point appropriately. This also

resets the ball and switches the position as the winner

will serve the next point.

Score() returns the score of both players as well as

the value of winner() as a tuple which is used set get

the score and winner at the end of a match.

Add() adds a point to a player based on the current

balls possession. If player one currently has possession

Holifield Page 8

when called, that means they lost the point so one point

will be awarded to player two. This is called inside of

count().

Winner() returns 1 if player one has won the game or

2 is player two has one. If neither player has won, it

simply returns 0. This is called in the game function to

determine if there is a winner.

Reset() resets the scores of both players to 0. This

is called every time main loops to reset the score between

games.

Render() is the last function in Scoreboard which

renders the score to the top center of the screen showing

player one’s score on the left and player two’s score on

the right of the center.

class Button: pg 26

This class is used to create a button object that

can be used in menus to allow user interaction of the

program. Three buttons are used in the main menu when

selecting between one, two, or zero player modes. Another

button is used in the winner menu which will return to

the main menu when pressed. This class only has one

function called draw(). Initialization of a Button object

will set the x and y location of the button, the size of

the button, as well as the text you want to be on the

button.

Draw() draws the button to the screen and returns a

Boolean if the button has been pressed or not. When

hovered over, the button pops up and goes down when

pressed.

Holifield Page 9

user-defined functions

def main: pg 15

This is the main function of the program that is the

start of the game. When called, it initialized Pygame and

creates a window for the game. Ball and Scoreboard objects

are then created to be used in the game. A while loop is

then run which first calls mainMenu(), then game(), and

then winMenu() before looping back to the main menu. This

will run indefinitely until the user closes out of the

window.

def mainMenu: pg 17

This function if the first screen the user will see.

It displays the name of the game at the top center and

has three buttons to choose a mode. The possible options

are one player where the user plays against the computer,

two player where the user plays against another user on

the same computer, and zero player where the user watches

two computer paddles play against each other. This

function will loop until a button is pressed or if the

user closes out of the window. It will return a tuple of

the two paddles based on the option the user selects.

def game: pg 16

This function is where the gameplay happens. When

called, the paddles, ball, and scoreboard are reset from

possible previous games. A while loop is then run that

first checks if the user has exited the window, then calls

Holifield Page 10

drawBackground() which effectively clears the previous

frame. Next the paddles and ball are updated using the

update() and paddleCollide() functions and the scoreboard

is updated using the count() function. The paddles, ball,

and scoreboard are then rendered to the screen using their

render() function. A timer then waits for a calculated

time to generate more consistent framerates. Lastly, the

function checks if there has been a winner and will end

the loop if one has been found. This loop will run

indefinitely until either the game has finished, or the

user closes out of the window. When the loop has been

exited, the score is returned which is later used in the

winMenu().

def winMenu: pg 19

This function is called when the game has finished.

The winner is displayed at the top of the screen with the

score in the middle of the screen. A button is on the

button center of the screen that will return to the main

menu when pressed. This screen will loop until either the

user pressed the button to return to the main menu, or

the user closes the window. This function returns a

Boolean called run that will be false if the button is

pressed but true if the window is closed. This is used in

main to end the main loop when the window is closed.

def drawShadow: pg 27

This function draws a shadow for the input rectangle.

This is used in the Ball.render() function when displaying

Holifield Page 11

the ball shadow, the Paddle.render() function when

display the paddle shadow, and the drawBackground()

function when drawing the shadow of the table. This is

its own function because multiple Pygame function are

required to display a rectangle with an alpha value, which

reduced the length of the code.

def drawBackground: pg 28

This function draws the background of the game at

the beginning of each frame. It starts by filling the

screen green, then drawing the two legs of the table.

Next it draws the table, its edge, its shadow, and the

two lines on the table. Next it draws the net and its

edge. Lastly, the scoreboard background is drawn in a

wood-like color with a darker border.

Holifield Page 12

user manual

 This program is very intuitive and should not be hard

to use after setup. If you are running the python files, you

will first need to install the Pygame package. This can be

done by typing python3 -m pip install -U pygame –user into your

command prompt. More information on installation can be found

on the Pygame website: https://www.pygame.org/docs/. After you

have installed Pygame, the program can be started by simply

running main.py. The game will start right up, and you will

be seeing the main menu with three options for different modes.

Simply click on the mode you want, and the game will begin.

https://www.pygame.org/docs/

Holifield Page 13

In one player mode, the ‘w’ key will move the paddle up and

the ‘s’ key will move the paddle down. In two player mode, the

second player’s key binds are ‘o’ to move the paddle up and

‘k’ to move it down. In zero player mode, the user will watch

two computers play against each other. You will play to 11

points, and the game will stop when either player reaches this

score.

Holifield Page 14

When the game has finished, you will be shown the winner screen

where you can press the main menu button to return to the main

menu to play another game. Thanks for trying out my game and

I hope you enjoy it!

Holifield Page 15

appendix

main.py

1. import pygame
2. from time import sleep, time
3. from pygame.locals import *
4. from paddle import *
5. from ball import *
6. from background import *
7. from scoreboard import *
8. from menu import *
9. from game import *
10. from constants import *
11.
12. # Main function that loops through the menus and game
13. def main():
14. running = True
15.
16. # Pygame initialization
17. pygame.init()
18. pygame.display.set_caption("2.5D Pong")
19. screen = pygame.display.set_mode((WIDTH, HEIGHT))
20.
21. # Initializing objects
22. ball = Ball()
23. scoreboard = Scoreboard(11)
24.
25. # Main loop, will run until you close the window or force stop the program
26. while running:
27. # Calls the main menu and gets paddles
28. paddles = mainMenu(screen, ball)
29. if paddles[0] != 0:
30. # Creates Game object with paddles and runs it
31. winner = game(screen, ball, scoreboard, paddles)
32.
33. if winner[2] == 0:
34. running = False
35. else:
36. sleep(1)
37. # Runs win menu when the game is over, loops back to main menu
38. running = winMenu(screen, winner)
39. else:
40. running = False
41. #end
42. #end
43. #end
44.
45. # Runs main code when file is run. Allows main to be accessed elsewhere
46. if __name__ == "__main__":
47. main()
48. #end

Holifield Page 16

game.py

1. import pygame
2. from time import sleep, time
3. from pygame.locals import *
4. from paddle import *
5. from ball import *
6. from background import *
7. from scoreboard import *
8. from constants import *
9.
10. # Main loop of game where gameplay happens
11. def game(screen, ball, scoreboard, paddles):
12. # Initialization of paddles
13. paddle_one = paddles[0]
14. paddle_two = paddles[1]
15.
16. running = True
17.
18. # Resets ball, paddles, and scoreboard from possible previous games
19. ball.reset(1)
20. ball.count = 5
21. paddle_one.reset()
22. paddle_two.reset()
23. scoreboard.reset()
24.
25. # Main Game loop
26. while(running):
27. t0 = time()
28.
29. # Stop running on exit
30. for event in pygame.event.get():
31. if event.type == pygame.QUIT:
32. running = False
33. #end
34.
35. # Clear screen before each frame
36. drawBackground(screen)
37.
38. # Update Objects
39. paddle_one.update()
40. paddle_two.update()
41. ball.paddleCollide(paddles)
42. ball.update()
43.
44. # Scoring
45. scoreboard.count(ball)
46. if ball.count == 1:
47. paddle_one.reset()
48. paddle_two.reset()
49. #end

Holifield Page 17

50.
51. # Render objects
52. paddle_one.render(screen)
53. paddle_two.render(screen)
54. ball.render(screen)
55. scoreboard.render(screen)
56.
57. # Display frame
58. display_surface = pygame.display.get_surface()
59. display_surface.blit(pygame.transform.flip(display_surface, False,

True), dest=(0, 0))
60. pygame.display.flip()
61.
62. t1 = time()
63. dt = t1 - t0
64.
65. # Timer for consistant frames per second
66. if dt < 0.002:
67. sleep(0.002 - dt)
68.
69. # Stop running when there is a winner
70. if scoreboard.winner() != 0:
71. running = False
72. #end
73. #end
74. return scoreboard.score()
75. #end game

menu.py

1. import pygame
2. from time import sleep
3. from pygame.locals import *
4. from button import *
5. from paddle import *
6. from constants import *
7.
8. # Main menu where user selects game option
9. def mainMenu(screen, ball):
10. running = True

11. mode = 0

12. difficulty = 2

13. hover = False

14.

15. # Creates font for text and sound

16. font = pygame.font.Font('fonts/MajorMonoDisplay.ttf', 100)

17. ball_sound = pygame.mixer.Sound('sounds/hit_table.wav')

18.

19. # Creates three buttons for different play modes

20. one_player = Button(CENTER_X, 420, BUTTON_SIZE, "one player")

21. two_player = Button(CENTER_X, 260, BUTTON_SIZE, "two player")

22. zero_player = Button(CENTER_X, 100, BUTTON_SIZE, "zero player")

23.

24. # Creates a rectangle for ball sound

Holifield Page 18

25. O = Rect(0,0, 58, 73)

26. O.center = (788, 605)

27.

28. # Main menu loop

29. while running:

30. # Ends loop if you close window

31. for event in pygame.event.get():

32. if event.type == pygame.QUIT:

33. running = False

34. #endm

35.

36. # Fills the screen green and displays the title

37. screen.fill(GREEN)

38. title = font.render("2.5D Pong", True, WHITE)

39. title = pygame.transform.flip(title, False, True)

40. screen.blit(title, ((WIDTH - title.get_width()) / 2, HEIGHT -

160))

41.

42. # Draws the 3 buttons and checking if any are pressed

43. if one_player.draw(screen):

44. mode = 1

45. elif two_player.draw(screen):

46. mode = 2

47. elif zero_player.draw(screen):

48. mode = 3

49. #end

50.

51.

52. # Display the frame

53. display_surface = pygame.display.get_surface()

54. display_surface.blit(pygame.transform.flip(display_surface,

False, True), dest=(0, 0))

55. pygame.display.flip()

56.

57. # Get posistion of cursor and make a noise if it collides the

the O

58. pos = (pygame.mouse.get_pos()[0], HEIGHT -

pygame.mouse.get_pos()[1])

59. if O.collidepoint(pos) and not hover:

60. ball_sound.play()

61. hover = True

62. elif not O.collidepoint(pos) and hover:

63. hover = False

64. #end

65.

66. # Timer to prvent unnecessary stress on hardware

67. sleep(0.01)

68.

69. # If a button is pressed, end the loop

70. if mode != 0:

71. running = False

72. #end

73. #end

74.

75. # Create paddles objects based on user selection

76. if mode == 2:

77. paddle_one = playerPaddle(PADDLE_X, pygame.K_w, pygame.K_s)

Holifield Page 19

78. paddle_two = playerPaddle(WIDTH - PADDLE_X, pygame.K_o,

pygame.K_k)

79. elif mode == 1:

80. paddle_one = playerPaddle(PADDLE_X, pygame.K_w, pygame.K_s)

81. paddle_two = cpuPaddle(WIDTH - PADDLE_X, ball, difficulty)

82. elif mode == 3:

83. paddle_one = cpuPaddle(PADDLE_X, ball , difficulty)

84. paddle_two = cpuPaddle(WIDTH - PADDLE_X, ball, difficulty)

85. else:

86. paddle_one, paddle_two = 0, 0

87. #end

88.

89. # Return the two paddles

90. return paddle_one, paddle_two

91. #end mainMenu

92.

93. # Winner menu when the game has ended

94. def winMenu(screen, winner):

95. running = True

96. run = True

97.

98. # Creates Font for text

99. font = pygame.font.Font('fonts/MajorMonoDisplay.ttf', 100)

100. large_font = pygame.font.Font('fonts/MajorMonoDisplay.ttf', 200)
101.
102. # Creates button to return to the main menu
103. main = Button(CENTER_X, 100, BUTTON_SIZE, "main menu")
104.
105. # Sets text for winner
106. text = "player one wins!" if winner[2] == 1 else "player two

wins!"

107.
108. # Winner Menu Loop
109. while running:
110. # Ends loop if you close window
111. for event in pygame.event.get():
112. if event.type == pygame.QUIT:
113. running = False
114. run = False
115. #end
116.
117. # Fills the screen green
118. screen.fill(GREEN)
119.
120. # Prints out the winner as well as the score
121. title = font.render(text, True, WHITE)
122. score = large_font.render(":", True, WHITE)
123. title = pygame.transform.flip(title, False, True)
124. score = pygame.transform.flip(score, False, True)
125. screen.blit(title, ((WIDTH - title.get_width()) / 2, HEIGHT -

140))

126. screen.blit(score, ((WIDTH - score.get_width()) / 2, HEIGHT -
440))

127.
128. score = large_font.render(str(winner[0]), True, WHITE)
129. score = pygame.transform.flip(score, False, True)

Holifield Page 20

130. screen.blit(score, ((WIDTH - score.get_width()) / 2 - 330,
HEIGHT - 440))

131.
132. score = large_font.render(str(winner[1]), True, WHITE)
133. score = pygame.transform.flip(score, False, True)
134. screen.blit(score, ((WIDTH - score.get_width()) / 2 + 330,

HEIGHT - 440))

135.
136. # Draws button and stops running when pressed
137. if main.draw(screen):
138. running = False
139. #end
140.
141. # Display the frame
142. display_surface = pygame.display.get_surface()
143. display_surface.blit(pygame.transform.flip(display_surface,

False, True), dest=(0, 0))

144. pygame.display.flip()
145.
146. # Timer to prvent unnecessary stress on hardware
147. sleep(0.01)
148. #end
149. return run
150. #end winMenu

 paddle.py

1. import pygame
2. from pygame.locals import *
3. from constants import *
4. from shadow import drawShadow
5.
6. # Paddle Object
7. class Paddle:
8. # Preset data for paddles
9. y = CENTER_Y
10. z = 150

11. speed = 0

12.

13. paddle = pygame.image.load('images/paddle.png')

14. shadow = Rect(0,0, 8, 80)

15.

16. # Initialization of paddle

17. def __init__(self, x):

18. self.x = x

19. #end

20.

21. # Resets the paddle position and speed

22. def reset(self):

23. self.speed = 0

24. self.y = CENTER_Y

25. #end

26.

27. # Renders the paddle to the screen

28. def render(self, screen):

Holifield Page 21

29. self.shadow.center = (self.x, self.y - 150)

30. drawShadow(self.shadow, screen)

31. screen.blit(self.paddle, (self.x - 5, self.y + BALL_Z_START /

5 - 50))

32. #end

33. #end Paddle

34.

35. # Player Paddle Obejct

36. class playerPaddle(Paddle):

37. # Initialization of paddle with keybinds

38. def __init__(self, x, up_key, down_key):

39. super().__init__(x)

40. self.up_key = up_key

41. self.down_key = down_key

42. #end

43.

44. # Updates the position and speed of the paddle

45. def update(self):

46. pressed_key = pygame.key.get_pressed()

47. if pressed_key[self.up_key] and self.y < PADDLE_MAX:

48. if self.speed < 0:

49. self.speed = 0;

50. if self.speed < PADDLE_SPEED:

51. self.speed = self.speed + PADDLE_ACCEL

52. elif pressed_key[self.down_key] and self.y > PADDLE_MIN:

53. if self.speed > 0:

54. self.speed = 0;

55. if self.speed > -PADDLE_SPEED:

56. self.speed = self.speed - PADDLE_ACCEL

57. else:

58. if abs(self.speed) >= 0.1:

59. self.speed = self.speed - (abs(self.speed) /

self.speed) * PADDLE_DECEL

60. else:

61. self.speed = 0

62. self.y = self.y + self.speed

63. #end

64. #end playerPaddle

65.

66. # Computer Paddle Object

67. class cpuPaddle(Paddle):

68. # Initialization of paddle with difficulty

69. def __init__(self, x, ball, difficulty):

70. super().__init__(x)

71. self.ball = ball

72. self.difficulty = difficulty

73.

74. if difficulty == 1:

75. self.max_speed = 1

76. self.accel = 0.01

77. self.decel = 0.03

78. elif difficulty == 2:

79. self.max_speed = 1.5

80. self.accel = 0.02

81. self.decel = 0.10

82. elif difficulty == 3:

83. # Expert difficulty

Holifield Page 22

84. pass

85. #end

86. #end

87.

88. # Updates the position and speed of the paddle

89. def update(self):

90. diff = self.y - self.ball.y

91. direction = self.ball.x_speed * (self.x - self.ball.x)

92. if direction > 0 and self.ball.count == 0:

93. if diff < 0:

94. if self.speed < 0 and self.difficulty > 2:

95. self.speed = 0;

96. if self.speed < self.max_speed:

97. self.speed = self.speed + self.accel

98. elif diff > 0:

99. if self.speed > 0 and self.difficulty > 2:

100. self.speed = 0;
101. if self.speed > -self.max_speed:
102. self.speed = self.speed - self.accel
103. else:
104. if abs(self.speed) >= 0.1:
105. self.speed = self.speed - (abs(self.speed) /

self.speed) * self.decel

106. else:
107. self.speed = 0
108. else:
109. if abs(self.speed) >= 0.1:
110. self.speed = self.speed - (abs(self.speed) /

self.speed) * self.decel

111. else:
112. self.speed = 0
113. #end
114. self.y = self.y + self.speed
115. #end
116. #end cpuPaddle

 ball.py

1. import pygame
2. from time import sleep, time
3. from random import seed, random
4. from pygame.locals import *
5. from constants import *
6. from shadow import drawShadow
7. pygame.mixer.init()
8. miss_sound = pygame.mixer.Sound('sounds/hit_miss.wav')
9. paddle_sound = pygame.mixer.Sound('sounds/hit_table.wav')
10. table_sound = pygame.mixer.Sound('sounds/hit_miss.wav')

11.

12. # Ball Object

13. class Ball:

14. # Preset values for a ball

15. ball = Rect((0,0),BALL_SIZE)

16. shadow = Rect(0,0, 15, 15)

17.

Holifield Page 23

18. x = BALL_X_START

19. y = CENTER_Y

20.

21. ball.center = (x, y)

22. count = 1

23. seed(time)

24.

25. # Initialization of ball

26. def __init__(self):

27. self.reset(1)

28. #end

29.

30. # Reset ball position and speed

31. def reset(self, player):

32. self.x = BALL_X_START

33. self.y = CENTER_Y

34. self.z = BALL_Z_START

35. self.sy = self.y

36.

37. self.x_speed = BALL_X_SPEED

38. if player == 2:

39. self.x = WIDTH - BALL_X_START

40. self.x_speed = -BALL_X_SPEED

41. self.y_speed = random() / 2 - 0.25

42. self.z_speed = BALL_Z_START_SPEED

43. self.z_accel = BALL_Z_ACCEL

44.

45. self.possession = player

46.

47. self.count = 250

48. #end

49.

50. # Updates ball position

51. def update(self):

52. if self.count <= 0:

53. self.z_speed = self.z_speed + self.z_accel

54. self.z = self.z + self.z_speed

55. if self.z <= 0:

56. self.z = 0

57. self.z_speed = BALL_Z_SPEED

58. self.switchPossession()

59. table_sound.play()

60.

61. self.x = self.x + self.x_speed

62. self.y = self.y + self.y_speed

63.

64. diff_x = CENTER_X - self.x

65. self.sy = self.y

66. if abs(diff_x) > TABLE_LENGTH / 2:

67. self.sy = self.sy - 150

68. #end

69.

70. # Play sound if ball is hit or missed

71. if self.count == 1:

72. paddle_sound.play()

73. elif self.count == 249:

74. miss_sound.play()

Holifield Page 24

75. #end

76.

77. # Alter x and y speeds of ball when in contact with a paddle

78. def paddleCollide(self, paddles):

79. for paddle in paddles:

80. x_diff = self.x - paddle.x

81. if abs(x_diff) <= (PADDLE_WIDTH + self.ball.width) / 2:

82. y_diff = self.y - paddle.y

83. if abs(y_diff) <= (PADDLE_HEIGHT + self.ball.height) /

2:

84. self.y_speed = self.y_speed + (y_diff / 50) -

paddle.speed / 2

85. self.x_speed = BALL_X_SPEED if x_diff > 0 else -

BALL_X_SPEED

86. paddle_sound.play()

87. #end

88. #end

89. #end

90. #end

91.

92. # Detects when a point is scored

93. def scored(self):

94. scored = False

95. # If ball falls off side of table

96. if self.z < BALL_Z_SPEED:

97. diff = CENTER_Y - self.y

98. if abs(diff) > (TABLE_WIDTH + self.ball.width) / 2:

99. scored = True

100. # If ball goes off back of table
101. if self.x < 0 or self.x > WIDTH:
102. scored = True
103. return scored
104. #end
105.
106. # Switch possession on contact with table
107. def switchPossession(self):
108. self.possession = 1 - self.possession + 2
109. #end
110.
111. # Renders the ball to the screen
112. def render(self, screen):
113. if self.count <= 0:
114. self.ball.center = (self.x, self.y + (self.z) / 5)
115.
116. size = 20 - self.z / 25
117. self.shadow.size = (size, size)
118. self.shadow.center = (self.x, self.sy)
119. else:
120. self.count = self.count - 1
121. if abs(CENTER_X - self.x) > TABLE_LENGTH / 2 or abs(CENTER_Y -

self.y) < TABLE_WIDTH / 2:

122. drawShadow(self.shadow, screen)
123. pygame.draw.rect(screen, WHITE, self.ball)
124. #end
125. #end Ball

Holifield Page 25

scoreboard.py

1. import pygame
2. from pygame.locals import *
3. from constants import *
4.
5. # Scoreboard Object
6. class Scoreboard:
7. # Preset values for a scoreboard
8. score_one = 0
9. score_two = 0
10.

11. # Initialization of scoreboard with max score

12. def __init__(self, max):

13. self.max = max

14. #end

15.

16. # Counts each time a ball is scored

17. def count(self, ball):

18. if ball.scored():

19. self.add(ball.possession)

20. ball.switchPossession()

21. ball.reset(ball.possession)

22. #end

23.

24. # Returns the score

25. def score(self):

26. return self.score_one, self.score_two, self.winner()

27. #end

28.

29. # Adds a point to a player

30. def add(self, player):

31. if player == 2:

32. self.score_one = self.score_one + 1

33. elif player == 1:

34. self.score_two = self.score_two + 1

35. #end

36.

37. # Returns 1 or 2 when a player has won, otherwise 0

38. def winner(self):

39. winner = 0

40.

41. if self.score_one == self.max:

42. winner = 1

43. elif self.score_two == self.max:

44. winner = 2

45. return winner

46. #end

47.

48. # Resets the score

49. def reset(self):

50. self.score_one = 0

Holifield Page 26

51. self.score_two = 0

52. #end

53.

54. # Renders the score to the screen

55. def render(self, screen):

56. font = pygame.font.Font('fonts/RobotoMono.ttf', 40)

57.

58. player_one = font.render(str(self.score_one), True, WHITE)

59. player_two = font.render(str(self.score_two), True, WHITE)

60. player_one = pygame.transform.flip(player_one, False, True)

61. player_two = pygame.transform.flip(player_two, False, True)

62.

63. x1 = len(str(abs(self.score_one))) - 1

64. x2 = len(str(abs(self.score_two))) - 1

65. screen.blit(player_one, (CENTER_X - 50 - x1 * 14, HEIGHT -

48))

66. screen.blit(player_two, (CENTER_X + 28 - x2 * 14, HEIGHT -

48))

67. #end

68. #end Scoreboard

 button.py

1. import pygame
2. from pygame.locals import *
3. from constants import *
4.
5. # Button Object
6. class Button():
7. # Preset values for a button
8. button_col = WHITE
9. hover_col = GRAY
10. text_col = GRAY

11. click_col = LIGHT_GRAY

12.

13. clicked = False

14. space = 0

15.

16. # Initialization of button with location, size, and text

17. def __init__(self, x, y, size, text):

18. self.x = x

19. self.y = y

20. self.text = text

21. self.size = size

22. #end

23.

24. # Draws button and returns true if button is pressed

25. def draw(self, screen):

26. action = False

27.

28. pos = (pygame.mouse.get_pos()[0], HEIGHT -

pygame.mouse.get_pos()[1])

29.

30. # Creates rectangles for button, collision, and shaddow

31. button_rect = Rect((0,0), self.size)

Holifield Page 27

32. collision = Rect(0,0, self.size[0], self.size[1] + self.space)

33. shaddow = Rect((0,0), self.size)

34.

35. button_rect.center = (self.x, self.y + self.space)

36. collision.center = (self.x , self.y + self.space / 2)

37. shaddow.center = (self.x, self.y)

38.

39. # Checks if button is hovered over or pressed

40. if collision.collidepoint(pos):

41. if pygame.mouse.get_pressed()[0] == 1:

42. self.clicked = True

43. self.space = 4

44. elif pygame.mouse.get_pressed()[0] == 0 and self.clicked

== True:

45. self.clicked = False

46. action = True

47. else:

48. self.space = 8

49. else:

50. self.space = 0

51. self.clicked = False

52. #end

53.

54. # Draws button, shaddow, and text

55. pygame.draw.rect(screen, self.hover_col, shaddow)

56. pygame.draw.rect(screen, self.button_col, button_rect)

57.

58. font = pygame.font.Font('fonts/MajorMonoDisplay.ttf', 35)

59. text_img = font.render(self.text, True, self.text_col)

60. text_img = pygame.transform.flip(text_img, False, True)

61. text_len = text_img.get_width()

62. screen.blit(text_img, (self.x - text_len / 2, self.y - 17 +

self.space))

63.

64. return action

65. #end

66. #end Button

shadow.py

1. import pygame
2. from pygame.locals import *
3. from constants import *
4.
5. # Draws the shadow of the ball
6. def drawShadow(shadow, screen):
7. shape_surf = pygame.Surface(pygame.Rect(shadow).size,

pygame.SRCALPHA)

8. pygame.draw.rect(shape_surf, SHADOW, shape_surf.get_rect())
9. screen.blit(shape_surf, shadow)
10. #end

Holifield Page 28

background.py

1. import pygame
2. from pygame.locals import *
3. from constants import *
4. from shadow import drawShadow
5.
6. # Rectangles that makeup the table and net
7. table = Rect(0,0, TABLE_LENGTH, TABLE_WIDTH)
8. table_edge = Rect(0,0, TABLE_LENGTH, TABLE_HEIGHT)
9. table_shadow = Rect(0,0, TABLE_LENGTH - 50, TABLE_SHADOW_WIDTH)
10. leg = Rect(0,0, 30, LEG_HEIGHT)

11. line = Rect(0,0, 7, TABLE_WIDTH)

12. net = Rect(0,0, NET_LENGTH, TABLE_WIDTH)

13. net_shadow = Rect(0,0, NET_LENGTH, NET_HEIGHT)

14.

15. # Rectangles for the scoreboard and border

16. scoreboard = Rect(0,0, SCOREBOARD_WIDTH, SCOREBOARD_HEIGHT)

17. border = Rect(0,0, SCOREBOARD_WIDTH + 2 * SCOREBOARD_BORDER,

SCOREBOARD_HEIGHT + SCOREBOARD_BORDER)

18. scoreboard_line = Rect(0,0, SCOREBOARD_BORDER, SCOREBOARD_HEIGHT +

SCOREBOARD_BORDER)

19.

20. # Renders the background including the ground, the table, and the

scoreboard background

21. def drawBackground(screen):

22. # Background

23. screen.fill(GREEN)

24.

25. # Table Legs

26. leg.center = (250, (HEIGHT - TABLE_WIDTH - LEG_HEIGHT) / 2 -

TABLE_HEIGHT)

27. pygame.draw.rect(screen, BROWN, leg)

28. leg.centerx = WIDTH - 250

29. pygame.draw.rect(screen, BROWN, leg)

30.

31. # Table

32. table.center = CENTER

33. pygame.draw.rect(screen, LIGHT_BLUE, table)

34. table_edge.center = (CENTER_X, (HEIGHT - TABLE_WIDTH -

TABLE_HEIGHT) / 2)

35. pygame.draw.rect(screen, DARK_BLUE, table_edge)

36. table_shadow.center = (CENTER_X, CENTER_Y - TABLE_WIDTH / 2 -

TABLE_HEIGHT - TABLE_SHADOW_WIDTH / 2)

37. drawShadow(table_shadow, screen)

38.

39. # Table Lines

40. line.center = (300, CENTER_Y)

41. pygame.draw.rect(screen, BLUE, line)

42. line.centerx = WIDTH - 300

43. pygame.draw.rect(screen, BLUE, line)

44.

45. # Net

46. net.center = (CENTER_X, CENTER_Y + NET_HEIGHT)

47. net_shadow.centerx = CENTER_X

Holifield Page 29

48. net_shadow.y = CENTER_Y - TABLE_WIDTH / 2

49. pygame.draw.rect(screen, WHITE, net)

50. pygame.draw.rect(screen, LIGHT_GRAY, net_shadow)

51.

52. # Scoreboard Background

53. scoreboard.center = (CENTER_X, HEIGHT - SCOREBOARD_HEIGHT / 2)

54. border.center = (CENTER_X, HEIGHT - (SCOREBOARD_HEIGHT +

SCOREBOARD_BORDER) / 2)

55. scoreboard_line.center = (CENTER_X, HEIGHT - SCOREBOARD_HEIGHT /

2)

56. pygame.draw.rect(screen, BROWN, border)

57. pygame.draw.rect(screen, ORANGE, scoreboard)

58. pygame.draw.rect(screen, BROWN, scoreboard_line)

59. #end

constants.py

1. # Colors
2. WHITE = (255, 255, 255)
3. SHADOW = (0, 0, 0, 40)
4. LIGHT_GRAY = (200, 200, 200)
5. GRAY = (150, 150, 150)
6. DARK_GRAY = (100, 100, 100)
7. LIGHT_BLUE = (150, 190, 240)
8. BLUE = (140, 175, 230)
9. DARK_BLUE = (85, 125, 175)
10. GREEN = (147, 216, 175)

11. ORANGE = (255, 190, 90)

12. BROWN = (175, 122, 56)

13. RED = (255, 133, 109)

14. YELLOW = (252, 255, 132)

15.

16. # Screen Size

17. WIDTH = 1280

18. HEIGHT = 720

19. CENTER_X = WIDTH / 2

20. CENTER_Y = HEIGHT / 2

21. CENTER = (CENTER_X, CENTER_Y)

22.

23. # Paddles

24. PADDLE_X = 90

25. PADDLE_WIDTH = 10

26. PADDLE_HEIGHT = 100

27.

28. PADDLE_SPEED = 3

29. PADDLE_ACCEL = 0.05

30. PADDLE_DECEL = 0.2

31. PADDLE_MIN = 0

32. PADDLE_MAX = HEIGHT

33.

34. # Ball

35. BALL_SIZE = (20, 20)

36. BALL_X_START = PADDLE_X + 20

37. BALL_Z_START = 150

38.

Holifield Page 30

39. BALL_X_SPEED = 5 # 5

40. BALL_Z_START_SPEED = 3.691

41. BALL_Z_SPEED = 5.35 # 5.425

42. BALL_Z_ACCEL = -0.05 # -0.05

43.

44. # Table and Net

45. TABLE_LENGTH = 950

46. TABLE_WIDTH = 450 #520

47. TABLE_HEIGHT = 20

48. TABLE_SHADOW_WIDTH = 125

49. NET_LENGTH = 10

50. NET_HEIGHT = 50

51. LEG_HEIGHT = 100

52.

53. # Scoreboard

54. SCOREBOARD_HEIGHT = 50

55. SCOREBOARD_WIDTH = 150

56. SCOREBOARD_BORDER = 4

57.

58. # Button

59. BUTTON_SIZE = (320, 100)

